Safe Drinking Water for All

SAFE BOTTLED WATER

Need for Microbiological

Quality Control

by Dr Sirajul Islam Khan

ATER is an absolute

crobiological concen-tration and quality

of water varies according to its

source, supply, storage condi-

tion and susceptibility to con-

tamination by pathogens of

various types including ex-

tremely harmful bacteria. Un-

derground and spring water un-

dergo natural filtration and can

be considered safe for consump-

tion subject to nature of extrac-

tion, treatment strategies, dis-

tribution, storage and han-

dling. Other potable water

sources for example, surface

water, have a much greater

chance of being a carrier of

pathogens of waterborne dis-

'eases. Stringent and relatively

expensive treatment ap-

proaches have to be employed

for assuring quality of potable water derived from river, lake

or any other surface reservoir.

In most cases, hand-pumped

tube-well water in villages are

most often not free or within

permissible limits of microbial

contaminants. Research car-

ried out by the Department of

Microbiology, University of

Dhaka, couple of years back

give credence to the above

related to environmental pollu-

tion, that determine the level of

microbial contamination. Al-

though soil strata serve as nat-

ural filter, leakage or seepage of

sewage or polluted effluents of

both household and industrial

origin leach out into the ground

water and contributes to pollu-

country are also not free of

harmful microbiological con-

than 90 per cent of these sup-

plies constitute groundwater as

source, after extraction the wa-

ter is hardly treated or disin-

fected and thus becomes suscep-

tion particularly when supply

pipe lines are leaked or come in

contact with sewage discharge

lines. The WASA water supply

is contaminated when distribu-

tion pipes form microbial

biofilm that further contributes

contamination

pathogenic bacteria. Recent

findings by the Department of

Microbiology, University of

Dhaka, has revealed alarming

level of microbial contamina-

tion in piped water supply over-

seen (or not seen!) by WASA au-

An Alternative Source

of Potable Water

Due to the poor quality of

piped supply water, people are

now looking for an alternative

source of water free of attendant

pathogen. Quality bottled water

may serve quite well as an al-

ternative source - particularly

for people having less financial

thority.

tible to microbial contamina-

tamination. Even though more

City water supplies in our

There are various factors

statement.

necessity for life. Mi-

bottled water as a commercial

venture in the western countries

materialised long ago. In Bangladesh production of bottled water started only about 7-

8 years back, Its sale has

tremendously increased

throughout the world including

Bangladesh, in the last few

years. In part, this increasing

market is the result of public

concern about the safety of

types - untreated and treated. It

can also be carbonated or still

(not carbonated). In some cases

the water is collected directly

from underground or natural

springs and bottled without

any treatment at the site of col-

lection. Another way is to treat

the groundwater in different

ways i.e. gravel-sand filtration

followed by ultraviolet (UV) ra-

diation, chlorination or ozonation or by other chemicals.

Some bottled water companies

gravel-filter the extracted

ground water and expose it to

UV-ray and/or apply ozone

treatment. All these treatment

strategies are applied to ensure

removal of pathogenic microbes

or bring them to a level as

recommended by US EPA, EC or

all microbes or attendant

pathogens during filtration,

bottling or storage is absolutely

impractical. The incidence of

pathogenic microbes in bottled

water is indirectly assessed by

the detection of "indicator bac-

teria" of various types, the

number of which correlates

with the presence of pathogens

in potable water. The 'coliform

concept' in water quality assur-

ance has lost its importants and credibility over the years

because of natural adaptation

of certain member of coliforms

even in pristine environment.

A long list of indicator organ-

isms are now-a-days recom-

mended by the US EPA and

other agencies with their ac-

ceptable limit values. Certain

types of indicators i.e. HPC

bacteria are allowed at a con-

centration of 50,000 per 100ml

of potable water while others

should be zero or between 0-

10/100ml depending on types of

indicator, treatment, source,

nature and quantum of supply.

with the most bottled water

produced in our country often

falls short of requisite stan-

dard. Of late dozens of compa-

nies have started commercial

production of bottled water and

are doing brisk business. Mi-

crobiological examination for

all these marketed bottled wa-

ter of various brands await

close monitoring and assess-

ment by the Department of Mi-

crobiology. University of

Department of Microbiology.

The writer is a Professor,

Dhaka.

Unfortunately the scenario

Removal or destruction of

Bottled water may be of two

supplied piped water.

Drinking Water in Third World Villages

Alternative Techniques Using Renewable Energy Sources

ANY people, particu-larly children, die of waterborne diarrhoeal diseases in the Third World. Each year, about three hundred thousand children under the age of five are killed by this disease in Bangladesh alone. Situations occur, particularly during and after natural calamities like floods and cyclones, when conventional means of providing pure drinking water become impractical due to problems of either technical or logistic nature. This paper puts forward a few alternative techniques for obtaining diarrhoeal germ-free drinking water that use renewable energy sources and which can be adopted during emergency or in normal situations.

Destroying Diarrhoeal Pathogens

Boiling is usually prescribed to purify water. However, this is not absolutely necessary. All diarrohoeal pathogens in water 60°C. At higher temperatures the process is much faster. Table 1 gives a collated sumin water (Hynes, 1968; Chowdhury, 1988). This is also the batemperatures are achievable in simple solar water heaters and solar water purification appears to be a practical proposi-

are destroyed in 30 minutes at mary of bacterial sterilisation sis of pasteurisation (30 mins at 63°C or 15 secs at 70°C). These

destroy waterborne diarrhoeal pathogens

Pathogen	Disease caused	Destruction
Salmonella group	Typhoid, paratyphoid	20 mins at 60°C
Vibrio Cholera	Cholera	15 mins at 55° C
E. Coli group	Diarrhoea	20 mins at 60°C
Shigella	Dysentry	1 hour at 55°C
Rota Virus	Infantile diarrhoea	30 mins at 60°C

Solar Water Purification

The Low-cost Model: In designing this model, the following points were considered. a) The unit has to cost as little as possible. b) Materials should be readily available in rural areas. c) Technology should be simple, within the reach of a common village man. d) The unit should be usable in situations of emergency, e.g., during floods and after cyclones, etc. e) It should be able to raise the temperature of at least a few litres of water to more than 60°C.

The main innovation in obtaining high overall temperatures using such a simple device was in having a thin water layer laid horizontally. Since

HE last fifty years of wa-

to mismanagement the quality

and quantity of water has de-

clined. This is linked to envi-

ronmental and economic

degradation in the region; it has

between the states of the region.

In short it has been a classic

case of misgovernance. In light

of the above we make the fol-

lowing propositions in an at-

tempt to at least think about the

restructuring of the political

Asia.

economy of water in South

Water and Governance: Wa-

ter scarcity in South Asia is due

to misuse and mismanagement

of water and natural resources

by the state. The present con-

struction-led water develop-

ment has benefited the rich;

while it marginalised the poor.

It has failed to provide fresh

drinking water to the general

people. Shortage of water has

also affected the foundations of

social and community life by

forcing the migration of the ru-

ral poor into the overcrowded

cities. This adds to the level of

pollution and further strain the

Risks: A complex relationship

exists among water, nature and

human intervention. In order

to comprehend this fully an in-

tegrated approach comprising

of pure science and technology,

Science, Uncertainty and

supply of fresh water.

also affected the future relations

ter management in South

Asia has been the story of

unfolding disaster. Due

hot water collects at the top by convection, the bottom layers will only heat up by conduction from the warmer layers above. If the water layer is too thick, the bottom layers remain considerably cooler (Rabbani et al. 1985). During the course of this work, it has been experimentally found that a layer thickness of less than 3/4" is required to obtain requisite temperatures at the bottom layer. Several designs were tried and the device chosen is shown in fig. 1a. The cross sectional schematic is shown in fig. 1b. However, a similar configura-

tion based on other materials

are equally feasible.

In fig. 1b, AB is a circular bamboo tray, about 2 feet in diameter, and placed on a bed of hay about 4 inches thick. This type of tray is cheap and is widely used in Bangladesh vil-lages for drying food items in the sun. The inside of the tray is painted black using any common paint. Alternatively a blackened paper or plastic sheet laid on the bottom of the tray would do. A thick polythene sheet about 4ft square is first laid on the tray (p in fig. 1b). This forms the water reservoir and two to three litres of water is poured onto this (q). A second polythene sheet (r) is laid on the water surface. Any trapped air bubble is removed by lightly rubbing with a finger from the centre outwards. If there are air pockets, water vapour will con-

TABLE-1: Minimum temperature and duration needed to dense under the sheet and wil

obstruct passage of solar en-

ergy. A few strands of thick

straw (s) is spread randomly on

this sheet over which another

social realities.

of the region.

sheet (t) is spread out. The strands of straw help maintain an air gap between these two layers of sheet. A further cover of polythene sheet (v) is spread out with similar straw strands (u) in between. This whole assembly of polythene sheets is kept stretched by pressing on the outside using a thick ring of twisted hay (w) on which some weights may be placed if necessary. The arrangement essentially forms a flat plate water heater with double transparent covers. The polythene sheets that are used as covers should be clear. Transparent pvc sheets are clearer than polythene sheets and may be used to give better performance, if avail-

An alternative arrangement uses a transparent polythene bag to hold water which is first placed flat on the painted tray. Another design uses water inside a flat coil of 1/2 inch dia transparent pvc tube with both ends tied up. The advantage is in easy handling of water. However it might become difficult to keep them clean and dry when not in use. Any tray like structure, even a cardboard box with hay or saw dust put inside, may be used instead of the bamboo tray. A tray made of polystyrene foam makes a good alternative if available, since it does not need any extra insulation. The insulation should be as good as possible since this determines the maximum attainable temperature. Hay, which traps lot of air has been found to perform well. A double transparent cover has also been chosen for this reason. A single transparent cover may be adequate at places with high solar insolation. A white cloth or a mat hung vertically beside the collector at an appropriate direction will reflect sunlight and boost the incident energy. These simple devices can even be in-

The Standard Model: This

Fig. 1. A low cost solar water purifier (a) and its cross sectional schematic (b)

by KS Rabbani

allel # 24 SWG galvanised iron

(GI) sheets 1/4" apart. To main-

tain the separation all through,

dents were made on both the

sheets at suitable intervals and

welded. The inlet and outlet

pipe connections were made on

the bottom plate at suitable

points with extra reinforce-

ment on the sheet. To resist cor-

rosion, thinned Nitrocellulose

paint (NC paint, also known as

car paint) was introduced into

the absorber through the inlet

and the whole assembly was

tilted up and down to get a

The collector frame was made

of # 16 SWG GI sheet and

polystyrene foam was used to

insulate the absorber. A single

transparent acrylic sheet

(PERSPEX) was used as the

front cover. However to prevent

it from sagging in the middle

the sheet was fixed with a slight

convex bulge. The collector was

fixed at an angle of 35° with the

horizontal, facing south

(latitude of Dhaka: 23.5° north).

The storage tank (40 litre capac-

ity) was made of GI sheets and

had double walls with

Rainwater Collection

creasing the collection area has

been proposed using polythene

sheets (Rabbani 1991) and

shown in fig 2. A four to six feet

square sheet is tied up on all

four corners to posts dug into

the earth. A hole in the centre

discharges the collected water

into a reservoir below which

can be a pitcher or tumbler.

This can even be used during

floods by erecting the device on

a raft. An alternative to the

polythene sheet is a clean sheet

of cloth with a weight placed at

the centre. This collects and

filters the water simultaneously

and has been used 30 to 40 years

back in some areas of

Bangladesh but is forgotten

now. A 4'x4' sheet will collect

about 15 litres of water for

Performance

designs of the low cost water

purifier are given in Table 2.

only marginalised them; but

Temperatures were measured

The performance of various

10mm of rainfall.

A simple method for in-

polystyrene foam insulation

coating on the inner surface.

stalled on rafts during floods.

using thermistors placed between the bottom layer of poly-

thene and the blackened tray. The heating performance of the model is basically a convenstandard model on a relatively clear day and that on a very tional flat plate water heater with thermosyphon storage. cloudy day (with rains in the However, the technology is enmorning) in August are shown tirely indigenous. The absorber in fig 3. The appropriate solar (6ftX3ft) is made out of two parinsolation (Global, Horizontal)

are also shown on the curves.

and maintained by trained staff. The design has survived for about five years without much deterioration of the PER-

SPEX cover or in the absorber. The solar technology and rainwater collection could form the basis of an alternative ap-

Table 2. Performance of low cost solar water heaters.

Type of solar water heater	Heating period	Temp.°C
Polystyrene tray, 1" thick wall, 1/4" water layer, double transparent PVC cover	ll am to l pm	72
As above, single PVC cover, with single white reflector	10:45 am to 12 noon	64
Cardboard box with 6" saw-dust insu- lator, 1/4" water, single PVC cover	12 noon to 1:30 pm	64
Bamboo tray, 3" hay insulator, 1/2" water single polythene cover	11:10 am to 1:40 pm	60
As above, double cover (one PVC, one polythene)	11:10 am to 1:40 pm	68

Discussion

From the results presented in Table 2 it appears that the low cost design have succeeded in achieving the requisite temperatures even in January when sunshine is minimum in Bangladesh (Declination: ~40 deg). During periods of intermittent sunshine a thinner water layer could be used to reduce the heating time. At least two harvests can be obtained per day using these designs thus doubling the quantity. This would be particularly useful for children and patients in a family. This technique should not be tried on cloudy days since adequate temperatures will not be reached.

proach for providing drinking water through most of the seasons excepting periods with non rain bearing clouds. If the required materials are stocked as a part of a disaster preparedness programme, they could save a lot of lives.

The author professor, Department of Physics, University of Dhaka. He wishes to thank Dr. Nazrul Islam. Ex-Professor of Pathology, IPGMR, Dhaka for helpful discussions and the research students who were associated at different stages of the work.

Fig. 2. Rainwater collector.

The standard flat plate col-All the discussions on this issue lector has performed very well could not be accommodated for About 55°C was obtained even space constraint. The remainon a cloudy day with rains in ing write-ups, however, will apthe morning. This could be used pear in our Focus/Features in a common facility like a rural health centre or a school

University of Dhaka constraints. Introduction of Fig. 3. Performance of the standard Solar water purifier. Arsenic-free Water

by Alternative Correspondent OUTH Asian experts are coming up with their own

answers against arsenic contamination. In India a project has recently been undertaken by a BEC team, widely appreciated as a cost effective and sustainable method of removing arsenic from contaminated water. This was reported by the Statesman in its issue of March 1 1998. The process involves the use of activated alumina, a promising medium for fixed-bed operations directed at removing arsenic from ground water. Over the past two years. the project masterminded by late Dr. Amar Kumar Datta of West Bengal, India, has developed removal units that utilize activated alumina, the advantage lying in non-use of electricity and no maintenance complications. The performance of this new technology in India has so far proven that the process can be employed on a full

within the reach of the common

people. Dr. Nishat suggested certain other measures to fight arsenic contamination. In this regard he emphasized relying on surface water rather than ground water. For this he suggested reviving the process of storing fresh water in well-protected ponds and using it after cleaning. In such ponds only selected small species of fish should be allowed to grow which will eat organisms. The banks of these that flood water cannot enter. filter tanks which was used durthe coastal areas. Thirdly, Dr. Nishat spoke about household

Recent estimates suggest that Bangladesh are at risk of arsenic contamination. There is no parallel in the world of such a huge population being affected by supply of drinking water. The vital challenge for us now is to devise strategies to fight against the devil's water. Researchers and scientists should and appropriate mechanisms if

scale basis. On the feasibility of using such technology in Bangladesh, Dr. Ainun Nishat, a leading water expert of our country, maintained that if more sub-

stantial evidence can be gathered about its performance then the technology may be tested in the field. He further opined that the technology appeared to be

up mosquito larvas and other ponds ought to be high raised so He further mentioned about the process of refining water by passing it through a series of ing the 1980s to refine water in basis storage of rain water in large pots, a method used in water scarce countries. This method should be popularized among the villagers. nearly 75 million people of

come up with more innovative we want to avoid a disastrous future for our posterity.

Our next issue of 'Alternatives' focuses on Public Toilet. Creative suggestions are invited from our esteemed readers. -Editor

A South Asian Manifesto on the Politics and Knowledge of Water with the natural flow of water;

by Imtiaz Ahmed, Ajaya Dixit and Ashis Nandy

ardous. In South Asia this sociology and politics is needed. knowledge is however yet to It is important to sensitise the science of water management to The natural sciences involve huge alterations in water structure, which affects its voland the politicians keep on perume, location and quality. On petuating the myth that large the other hand, South Asia's dams are the only means of enhydrology is inherently uncersuring water security. Theretain. Such uncertainty is exacfore, any attempt to promote erbated by the unreliability of sustainable alternatives must data. Massive water developtake into account the relationment projects have often been ship between knowledge and undertaken based on western models and insufficient data. power, and the politics of it.

These borrowed models are of-Water and Equity: Water development ventures in South ten out of tune with the realities Asia, for example dams, reservoirs and canals has benefited The Hubris of Modern Technology and Global Capital: the majority community at the expense of the minorities espe-Modern technology is inextricably linked with and depencially the indigenous people. In most instances they have been dent on global capital. Capital displaced from their lands with seeks quick returns, not botno or very little compensation. tom-up initiatives necessary These constructions also for self-reliant change. Moreopened up their lands to exterover it operates within a cennal intrusion, which thortralised system which is closer oughly disrupted their cultural to the rich and the powerful. Consequently the large water resource projects drives a wedge and social lives. In extreme cases it gave birth to sub-na-

between the investors and the tionalism and violence. general people dependent on Women in South Asia have traditionally played a critical water. role in water conservation and Dams and Profitability: The management. But this has now West has largely come to realize been taken over by the the unprofitability of large "masculine reductionist scidams. They are increasingly ence" which has led to the discriticized for being economiplacement of women from their cally unsound, socially harmtraditional role. This has not ful and environmentally haz-

has also distorted the basic conseep through in the public disfiguration of the cultures in this course. Consequently the vested part of the word. interest group that stands to reap profits through these constructions, i.e., the contractors

Water Insecurity and the Costs of Water: Water insecurity is linked to environmental insecurity and social uprooting. This affects the poorer section of the community the most. The situation is made worse for them by the rapidly growing cost of supplying water. In the rural areas it is the elite who usually controls the water pumps. Water is sold at exorbitant prices. The poor thus have no easy access to water. They also are the worst sufferers of water-borne diseases. This further strains the already meager health budgets of South Asian

states. Decentralising Water Management: Centralised water management and development is often negligent of local needs. Water has been turned into a national security issue; thus disassociating it from its actual use. This has led to lack of transparency and absence of accountability. Since the re-sources themselves are naturally decentralised, it is important that water management and development too be decentralised and brought under the control of local government

and monitored by the civil so-

ciety. Devolution of political

power for decentralised man-

agement is bound to bring about innovative and creative changes in water management and development

Denationalising Water: South Asian states have nationalised their water resources, though water seldom remains within the jurisdiction of national boundaries. Nationalisation of water has brought untold sufferings to the people. For instance, this perpetuates the propensity for rent-seeking and has led to the creation of "water lords" in eastern India. The construction of the Farakka barrage has not only harmed the population of Bangladesh but has also brought devastation in Bihar and West Bengal. Construction of large dams is seen as symbols

water would free water from the power of the state and the culure of the state. Rivers Rights: Rights of the guaranteed by the state and the people. Such rights have al-

diversions not only interfere

but also put the ecology and economy of the area into jeopardy. It has caused immense sufferings to the people, especially the indigenous communities, which in turn has led to the creation of environmental

refugees. Towards an Integrative Vision: So far the approach to water management and water development has remained fragmentary. It is our belief that water management must be based on the recognition of the wholeness of water and its intrinsic function in nature. In order to bring about the change interventions must be based at all levels. To begin with it must be integrated at all levels of our academic curriculum. There is a need to integrate the global and the local. Plurality of views and options must be sought. Most importantly in order to have a

more secure future for water

there ought to be participatory.

consensus-seeking, democratic,

of the Manifesto. Imtiaz Ahmed

teaches international relations

in Dhaka University; Ajaya

Dixit is a water resources engi-

neer working with the Nepal

Water Conservation Founda-

tion, Kathmandu; and Ashis

Nandy is a political psycholo-

gist and former Director, Centre

for the Study of Developing So-

cleties, New Delhi.

This is an abridged version

accountable governance.

of "national development" whereas as pointed out earlier they are the cause of much hu-man miseries. Denationalising rivers must be codified and

ready been codified for oceans and seas. These would help keep the rivers relatively pollutionfree and provide a safe habitat for riverine forms of life, and allow it to flow freely within limits. Large constructions and