

Feature

Environment

Global Warming in Asia-Pacific Region

by Karar Mahmudul Hassan

GLOBAL climate is changing because of the build up in the atmosphere of carbon dioxide (CO₂), methane, nitrous oxide (N₂O), the CFCs (powerful greenhouse gases as well as destroyers of stratospheric ozone), and other greenhouse gases produced by fossil fuel burning, by deforestation and by producing food for the rapidly increasing global population. The possibility of a rise in mean sea level due to global warming (Greenhouse Effect) has caused considerable interest amongst the international scientific community for some time and more recently amongst scientists, government officials and the general public in Bangladesh. The interest in sea level rise as a consequence of the Greenhouse Effect has coincided with a major concern about environmental issues in general in Bangladesh which was triggered by the devastating floods of 1988 and Cyclones of 1988 and 1989.

Bangladesh being a very densely populated (approximately 115 million people) low lying area of only about 144,000 square kilometres on the delta of three major rivers of the world namely the Ganges, the Brahmaputra and the Meghna, is one of the countries most vulnerable to the effects of global climate change, particularly sea level rise.

Possible Scenario

According to a group of experts who convened in Villach in 1987 (WMO 1988), by middle of next century the Greenhouse gases will warm the humid tropical region by 0.3 to 0.5°C and the major effects of climate changes would result from:

Rising water level along coasts and rivers, resulting from a combination of increasing sea-level, greater chance of tropical storm surges and rising peak runoff. These will result in larger areas being subject to flooding and risk of salinization. Also:

- Changing spatial and temporal distribution of temperatures and precipitation with effects on industry, settlement, agriculture.

- Grazing lands, fisheries and forests.

- Increase in rainfall in the range of 5-20 per cent, largely through increases in rainfall intensity. This will increase the chances of major floods.

- Since warming will increase the potential evapotranspiration there could be a tendency towards more drought stress.

As Bangladesh has humid tropical climate, the above assumptions have been given due weightage and available data analyses to verify the validity of the above predictions.

Sea-level Change

According to recent estimate, due to global warming the sea-level rise may be about 200 cm by 2030 this could be as much as 1 m by the end of the next century depending upon the future control of greenhouse gas emission. The sea-level change along specific coast will depend on regional and local geological movement as well as global sea-level rise.

Effect of sea-level change in coastal areas: One metre sea-level change will inundate about (22,889 sq km) of existing coastal land which is about,

15.8 per cent of the total area of Bangladesh. About 401,600 hectares of mangrove forest along with its wildlife will be lost. The inundation of 2.915 million acres of net cropped land will cause production loss of more than 2.00 million tons of rice, 13,000 tons of wheat, 214,000 tons of sugarcane, 404,000 tons of vegetables, 10,000 tons of jute and 97,000 tons of pulses. The total loss of assets and production in the small and cottage industry sector are Tk 1078 million and Tk 981,553 billion respectively.

* About 10 per cent of country's 115 million population (about 2.05 million households) will be displaced and will not have any option but to migrate to unaffected urban areas and live in perpetual poverty.

* The loss to housing and physical infrastructure will be extensive about 1.9 million houses, 8300 schools, 180 health centres, 1470 km of railways, 10,3000 bridges and culverts, 700 km of metalled roads, 375 food/fertilizer godowns and 1780 markets will be lost. Output loss is estimated to be about 13 per cent of GDP and loss of assets of circa Tk 450 billion (US \$14 billion) at 1984-85 prices. These estimates are based on 1988 condition.

Effect of sea-level change in mainland: Due to back water effect, the sea-level rise will cause rise in water levels in various rivers and streams. The surface water simulation study for 1 m sea-level rise indicates that the water level of Ganges and Jamuna rivers will be affected. As a result, this rise of water level due to sea-level rise, the flood plains and low-lying areas of another 20 per cent and areas of Bangladesh will be inundated and considerable amount of cropland now suitable for transplanted Aman will be lost. Moreover, both the duration and extent of flooding in these areas will be increased.

Effect of sea-level change on mangrove forest: With 1 m sea-level change, the entire 401,600 hectares of mangrove forest (Sundarbans) as well as 36,000 hectares of newly established mangrove forests along the coast will be gradually destroyed. Already, the western part of Sundarbans which have been subjected to a progressive decline of fresh water supply (mainly due to diversion of substantial amount of Ganges water by the Farakka Barrage) has resulted in increase in salinity, which in turn reduced the regeneration rate of sundari in approximately 17 per cent of the stem of sundari (One of the two major species) are moderately or severely affected by top-drying. Some 300,000 wood cutters fishermen and others who find a living there at various season of the year, will lose their employment.

By analysing more than 85 years rainfall data, the results indicate that there is a change in spatial and temporal distribution of rainfall. However, it was not possible to prove whether those changes were due to global warming or not.

But this change in spatial and temporal distribution of rainfall is likely to have short term effect on agricultural productivity through (a) variation in seasonal crop yield, (b) season to season yield variability (c) winter season yield variability (d) variation of yield

The cost of the above work will require about Tk 18.26 billion (USD 562 million) at 1984-85 price.

Rainfall trend and variability in Bangladesh

The occurrence of series of wet and dry years and their great importance raises the question as to whether identifiable trends and changes in intensity of rainfall and variability exists. Such fluctuations have implications to water resources and agriculture developments. It may be noted that a variation in rainfall will have an effect on runoff change. Hence, the rate of change is likely to be critical. Rapid change in rainfall due to global warming will have very serious implications.

By analysing more than 85 years rainfall data, the results indicate that there is a change in spatial and temporal distribution of rainfall. However, it was not possible to prove whether those changes were due to global warming or not.

But this change in spatial and temporal distribution of rainfall is likely to have short term effect on agricultural productivity through (a) variation in seasonal crop yield, (b) season to season yield variability (c) winter season yield variability (d) variation of yield

Storm surge associated with tropical cyclone is one of the serious problems in the coastal areas of Bangladesh. The average annual frequency of tropical cyclones in the Bay of Bengal ranges between 12 and 13, out of which 5 attain cyclonic strength (wind 35 knots). A comparative study of monthly frequency of tropical cyclones in the Bay of Bengal for the period 1891 to 1960 against subsequent 14 year period (1961 to 1974) clearly indicate that monthly frequency of tropical cyclone during latter period

(1961-1970) is significantly greater than that of 1891-1960 period. Although monthly frequency during 1975-1988 is slightly less than 1961-1974 period (except for the month of November), but it is higher than the period 1891-1960.

Changes in climate is also likely to have long-term effect on agriculture through (a) change in mean yields that are positively related to average seasonal precipitation (b) change in level of crop yield dependability (c) concurrent effect on soil fertility. In addition to the effect of change in rainfall on agriculture productivity of a given location change in spatial and temporal distribution of precipitation will change short-term and long-term shift in the spatial pattern of agricultural potential and risk.

Effect of climate change on natural disaster

Above analysis of the rainfall data indicate that (a) annual rainfall in the western part of Bangladesh is about 1400 mm and if it is more than 500 mm is the northeast region of Bangladesh (b) the amount of rainfall is increasing in the wetter areas and decreasing in the drier areas (c) the coefficient of variation of rainfall is more in the drier areas as well as during pre and post-monsoon period (d) change in the magnitude of rainfall is mainly due to change in intensity of rainfall (change in frequency of heavy rainfall) (e) on an average about 80 per cent of the rainfall occurs during four months from June to September (f) duration of monsoon period is shortage (about three months) in the western part of Bangladesh (about 5 months).

Decrease in rainfall, higher coefficient of variation of rainfall and shorter monsoon period in the already drought-prone western part of Bangladesh is likely to increase both frequency and intensity of drought stress. In all probability drought-prone areas will also extend towards south and south-central region of Bangladesh. Recent trend of floods in Bangladesh appears to indicate that frequency of more floods is increasing. The area affected by the major floods during last 33 years have increased from 50,000 sq km in 1955 to 90,000 sq km in 1988. Moreover, it seems that both magnitude and intensity of rainfall is increasing in the north eastern region of Bangladesh. Although there is lack of access to rainfall data of north eastern part of India, Nepal and Bhutan, it is quite probable that the rainfall in these areas have similar increasing trends like that of north east of Bangladesh. If that is the case, it is likely that both intensity and frequency of a higher peak in Brahmaputra will increase.

As the effect of floods, cyclones and tornadoes are more visible than droughts, normally we are more concerned about three types of natural calamities. But to reduce the effect of drought on agriculture more stress should be given to development and introduction of drought resistant crops and more irrigation facilities in drought-prone areas.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood control.

For controlling floods in Bangladesh, the upstream stored water would reduce the flood stages in the river flows across the flood plains. Water storage is a powerful tool that can serve winter irrigation and hydropower generation as well as flood control. For short and medium term the construction of embankment with a provision for controlled flooding seems to be the most effective way to achieve flood