

Feature

Science and Technology

Less Food for More People

LOS BANOS, Philippines — Agricultural scientists are grappling with a Malthusian dilemma: the Third World's population is growing faster than its food production and no new breakthrough is expected any time soon to dramatically boost harvests.

The planet's human population crossed the 5.4 billion mark last month. And according to the State of the World Population Report of the United Nations Population Fund (UNFPA) it will reach 8.5 billion by the year 2025 — nearly 40 million more than previous estimates.

But land planted to major cereals has not increased since the mid-1970's and scientists say yield have plateaued off as improved seeds reach their technological limits.

In addition, the dumping of surplus grain by industrialised countries has artificially depressed international prices of cereals like rice, giving Third World countries no incentives to increase domestic harvests.

Amidst the lush experimental paddy fields of the International Rice Research Institute (IRRI) in this town 60 km south of the Philippine capital, scientists are racing

against time to design new rice hybrids before it is too late.

Of the eight billion people the earth will have in 30 years' time, 4.3 billion will be rice-eaters — most of them in Asia.

The world's rice production must rise from 470 million tonnes to 780 million tonnes

Scientists are racing against time to design new rice hybrids that would enable food production to keep pace with population growth. Kunda Dixit of IPS reports.

just to maintain current inadequate nutrition levels, says Dr Klaus Lampe, IRRI director general.

That is an increase of 60 percent. But IRRI scientists say that even with the best existing seed varieties, rice production under optimum conditions will go up by only 30 per cent by the year 2000.

They are testing new rice hybrids that can better withstand pests and adverse weather. IRRI's rice breeders are also using new gene splicing techniques to develop a variety of 'super rice' that can double present harvest levels to 15 tonnes per hectare.

IRRI's sister institutions under the Washington-based

Consultative Group on International Agricultural Research (CGIAR) specialise in other cereals like wheat and maize and are desperately testing similar techniques to improve yields.

In Asia, the arithmetic of food production vs population growth just does not add up.

the Green Revolution increased rice harvests in South and South-east Asia by 66 per cent. This despite a 61 per cent increase in population and increase by only 16 per cent of land planted to rice.

IRRI's legendary IR-8 rice made Indonesia and the Philippines self-sufficient in rice. Declared a 'basket case' 20 years earlier, India was supplying rice and wheat to famine-stricken countries of Africa by 1986.

While hoping for similar breakthroughs, IRRI scientists admit that this time yield increases have tapered off and rice harvests are reaching their technological limits.

The last time the spectre of famine loomed in Asia was in the mid-1960s when demographers predicted that there was no way food production could keep pace with the population explosion.

But IRRI's miracle dwarf rice and improved wheat seeds developed at the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico brought dramatic harvests in the nick of time.

Between 1964 and 1986,

Two-thirds of the world's population lives in Asia. But land planted to rice has shrunk, and Asia may fall short by 50 million tonnes of meeting its requirements by the year 2000.

The green revolution also spawned environmental problems. Rise in irrigated land has caused soil salinity. IRRI's new seeds needed to be pampered by expensive fertilisers and pesticides which pauperised some farmers and contaminated ground water and reservoirs.

The green revolution also widened economic disparities within countries. In mostly benefited big farmers in fertile, irrigated lowland farms.

leaving small-scale peasants high and dry.

Robert F. Chandler, one of IRRI's founders and recipient of the 1986 World Food Prize, says: 'The world can feed itself one decade from now only with massive expenditures unequalled in the past, except in times of war.'

Money is trickling in, but it is not quite nearly enough. The US Rockefeller Foundation has been giving seven million dollars a year for the past four years to genetically design a 'super rice'.

The United Nations Development Programme (UNDP) and the World Bank are funding the International Network for Genetic Evaluation of Rice (INGER) to develop high-yield rice seeds.

Stung by past criticism that its new rice has only benefited rich farmers, IRRI is turning its attention to poor upland rain-fed rice farmers, crop rotation, natural fertilisers and pest control.

But experts like Chandler see hope only if population growth can be curbed. 'Progress will be slow and difficult until human population growth is substantially reduced,' he says.

SCIENCE BRIEFS

Intraocular Lenses to be Made in India

Intraocular lenses for insertion into eyes after cataract surgery will soon be made in the country. As of today, these lenses are imported by India.

Cataract is a condition where the natural lens in the eye loses its transparency. Contrary to the idea of it being associated with aging, it can occur among the youth, children and even in newborns. The causes can be either congenital, accidental or indiscriminate use of drugs. The result is blurred vision or total blindness.

Cataract surgery removes the opaque lens and vision is restored after wearing glasses or contact lenses of a focal length equal to that of the natural lens.

However, accommodation (the natural capacity to focus near and far objects at will) is lost, peripheral vision is affected and objects appear larger than normal.

If cataract has affected only one eye, there is sometimes the problem of double vision.

Aged persons are able to manage with these handicaps due to their limited activity, but for small children and youth it is a serious handicap that affects their career.

Contact lenses are inconvenient for elderly people and children as they need very careful handling. Unhygienic conditions and dust-laden air cause eye infections while they tend to fall off in a strong gusty wind. They are also very expensive.

The new lens implant technique provides for a permanent replacement of the affected lens by an artificial lens made of plastic, silicon or glass after a surgery which takes about half an hour. The cost today ranges from Rs 400 to Rs 3,000. (GVJ)

Portable Engine Oil-Testing Kit

A New Delhi-based engineering group has developed a portable engine oil-testing kit that is said to be easy to operate and suitable for on-site applications.

Oils used in engines constantly deteriorate through degradation and contamination with fuel combustion byproducts. Testing engine oil will help determine whether the oil is good enough for continued use and also is likely to help check adulteration of oils.

The new testing kit developed by S S Engineering Industries has a specially designed oil pump that can be used to draw oil from the crankcase directly from some other source into a sample bottle.

The kit also has a visage to determine the exact viscosity of the oil, a hydrometer to determine the water content and a gauge to determine the maximum required total base number of the oil. (GSM)

New Machine to Refine Gold

A Bombay-based goldsmith has, after 12 years of in-depth research, designed a new machine to refine gold ornaments, which causes no waste or risk of air pollution.

The machine is a compact table-top unit with push button control, and assures complete safety while handling corrosive chemicals such as hydrochloric and nitric acids which are widely used for purifying gold.

PRIVATE lecturer Stefan W. Eber has recently demonstrated with his own research just how efficient molecular biological methods are today. Thanks to the pediatrician from Göttingen and his collaborators, the molecular geneticist Professor J. Prchal, Alabama, USA, as well as the hematologists at the Children's Clinic of the University of Göttingen, a hereditary malformation of the red blood cells has now been explained in full.

Human red blood cells, the erythrocytes, have an unmistakable shape: circular, with a thick edge and — not unlike a rubber raft — both sides are slightly concave in the middle. The red colour can be attributed to the haemoglobin, which binds vital oxygen to itself, thus making the red blood cells its carrier. However, it is not unusual for red blood cells to be congenitally malformed with membrane defects. This is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

In the search for possible causes of this malformation, researchers have concentrated on the suffering of a family from Göttingen entailing severe anaemia and membrane defects. Here, they were dealing with elliptocytosis, which is closely related to hereditary spherocytosis, but leads to the formation of elliptically misshapen red blood cells. This defect, which prevents the 'mesh' from closing, has been traced to one of the 'components', which make up spectrin. Apparently, in this case a coupling element is lacking.

the no-longer functional red blood cells are removed, to become considerably enlarged. Affected children suffer growth disorders, and in particularly extreme cases their skulls are deformed. Frequently, survival can only be assured through constant blood transfusions.

As is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human blood cells, the erythrocytes also possess a membrane consisting of fat-like substances, which is subjected to extreme stress in the blood stream. Consequently, this membrane has a 'strengthened mesh' consisting of the protein spectrin. The stability of this system is strengthened even more by additional proteins, which project through the membrane like columns and thus bolster the structure of the mesh. However, in the case of hereditary spherocytosis, the mesh is too weak because it does not contain enough spectrin strands.

It is the case for all human